Abstract

A key event in bone resorption is the recruitment of osteoclasts to future resorption sites. We follow here the migration of preosteoclasts from the periosteum to the developing marrow cavity of fetal mouse metatarsals in culture, and investigate the role of proteinases and demineralization in this migration. Our approach consisted in testing inhibitors of proteinases and demineralization on the migration kinetics. Migration was monitored by histomorphometry and the (pre)osteoclasts were identified by their tartrate resistant acid phosphatase (TRAP) activity. At the time of explantation, TRAP+ cells (all mononucleated) are detected only in the periosteum, and the core of the diaphysis (future marrow cavity) consist of calcified cartilage. Upon culture, TRAP+ cells (differentiating progressively into multinucleated osteoclasts) migrate through a seam of osteoid and a very thin and discontinuous layer of mineral, invade the calcified cartilage and transform it into a "marrow' cavity; despite the passage of maturing osteoclasts, the osteoid develops into a bone collar. The migration of TRAP+ cells is completely prevented by matrix metalloproteinase (MMP) inhibitors, but not by a cysteine proteinase inhibitor, an inhibitor of carbonic anhydrase, or a bisphosphonate. The latter three drugs inhibit, however, the resorptive activity of mature osteoclasts at least as efficiently as do the MMP inhibitors, as assessed in cultures of calvariae and radii. Furthermore, in situ hybridizations reveal the expression of 2 MMPs, gelatinase B (MMP-9 or 92 kDa type IV collagenase) in (pre)osteoclasts, and interstitial collagenase (MMP-13) in hypertrophic chondrocytes. It is concluded that only MMPs appear obligatory for the migration of (pre)osteoclasts, and that this role is distinct from the one MMPs may play in the subosteoclastic resorption compartment. We propose that this new role of MMPs is a major component of the mechanism that determines where and when the osteoclasts will attack the bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.