Abstract

The matrix isolation technique, combined with infrared spectroscopy and merged jet deposition of ozone with propene led to the observation of “later”, more stable products of this ozonolysis reaction. The observed products, specifically formaldehyde and acetaldehyde, are precisely the products predicted by the Criegee mechanism, formed by the two fragmentation pathways from the initial primary ozonide. Hence, the merged jet results strongly support the Criegee mechanism. In contrast, twin jet codeposition experiments followed by annealing led to no visible changes in the spectra. Subsequent irradiation of these twin jet matrices involving ozone with light of λ ⩾ 220 nm led to O atom production and subsequent reaction with propene. Multiple products were observed in these photochemical experiments. Extensive 18O isotopic labeling experiments, comparisons with literature spectra, and detailed theoretical calculations at the B3LYP/6-311++G(d,2p) level provided important supporting data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.