Abstract

The neutral compound hypoxanthine is investigated using the technique of matrix-isolation FT-IR spectroscopy combined with density functional theory (DFT) and ab initio methods. Two theoretical methods (RHF and DFT/B3-LYP) are compared for vibrational frequency prediction, and four methods (RHF//RHF, MP2//RHF, DFT//DFT and MP2//DFT) for prediction of the relative energies of the tautomers and the interaction energies of the complexes. All the possible tautomeric forms have been considered theoretically, and the results indicate that two oxo forms (O17 and O19) and one hydroxy form (H9-r1) are the three most stable forms. The experimental FT-IR spectra are consistent with this prediction, and nearly all the characteristic spectral features of these forms have been identified in the spectrum. A theoretical study of the H-bonded complexes of these three tautomers with water is also performed. Several structures have been found for each form and the results demonstrate that the closed complexes with two H-bonds are the most stable systems due to the H-bond cooperative effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.