Abstract

In this paper concentrated on the design of a minimum rule based fuzzy-logic controller for robot navigation, and hurdles avoidance in cluttered environment, based on the Mamdani type fuzzy method. The controller has 3 inputs, and single output. This technique generates suitable heading angle maneuvers control of the autonomous vehicle which is used by the robot to reach its goal safely without any collision in cluttered environment. Simulation results show the method can be used for wheeled mobile robot moving on in cluttered environment with lot of hurdles. We present a path-planning system that can control and safely navigate robot motion in a static environment. The success of the mobile robot navigation control depends mostly on the accuracy of absolute measurements of its position, hurdle distances, goal distance, velocity, orientation, and its rate of change its heading angle. The whole navigation system has been tested in a simulation environment with satisfying results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.