Abstract
Abstract The next stage after performing observations and their primary reduction is to transform the set of observations into a catalog. To this end, objects that are irrelevant to the catalog should be excluded from observations and gross errors should be discarded. To transform such a prepared data set into a high-precision catalog, we need to identify and correct systematic errors. Therefore, each object of the survey should be observed several, preferably many, times. The problem formally reduces to solving an overdetermined set of equations. However, in the case of catalogs this system of equations has a very specific form: it is extremely sparse, and its sparseness increases rapidly with the number of objects in the catalog. Such equation systems require special methods for storing data on disks and in RAM, and for the choice of the techniques for their solving. Another specific feature of such systems is their high “stiffiness”, which also increases with the volume of a catalog. Special stable mathematical methods should be used in order not to lose precision when solving such systems of equations. We illustrate the problem by the example of photometric star catalogs, although similar problems arise in the case of positional, radial-velocity, and parallax catalogs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.