Abstract

Linear coherent noise attenuation is a troublesome problem in a variety of seismic exploration areas. Traditional methods often use the differences in frequency, wavenumber, or amplitude to separate the useful signal and coherent noise. However, the application of traditional methods is limited or even invalid when the aforementioned differences between useful signal and coherent noise are too small to be distinguished. For this reason, we have managed to develop a new algorithm from the differences in the shape of seismic waves, and thus, introduce mathematical morphological filtering (MMF) into coherent noise attenuation. The morphological operation is calculated in the trace direction of a rotating coordinate system. This rotating coordinate system is along the direction of the trajectory of coherent noise to make the energy of the coherent noise distributed along the horizontal direction. The MMF approach is more effective than mean and median filters in rejecting abnormal values and causes fewer artifacts compared with [Formula: see text]-[Formula: see text] filtering. Our technique requires that coherent noise can be picked successfully. Application of our technique on synthetic and field seismic data demonstrates its successful performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.