Abstract
Vehicle congestion and the environmental problems associated with the increasing vehicle fleet have led stakeholders to create solutions to these problems. Park-and-Ride (P&R) facilities are provided as a solution for public transportation to avoid increasing vehicular flow and using private vehicles. However, the optimal location of these facilities is still a challenge to be considered. Therefore, this article aims to present a systematic review of the mathematical models applied for P&R localization, using the PRISMA protocol to ensure a comprehensive analysis. A total of 44 articles between 2002 and 2025 were identified into four categories: decision support models, econometric models, optimization models, and other models. The review also examines the term distribution of urban contexts where the mathematical models are applied, distinguishing between Global North versus Global South urban contexts. The results showed the efficiency of mathematical models within the decision support models category due to their integration with multiple criteria. The econometric models analyze factors influencing user behavior, while the optimization models improve and optimize the efficiency of transport networks despite facing computational challenges. Finally, other models, such as multilevel programming and fuzzy logic, offer adaptive solutions for highly variable urban environments. The primary contribution of this study is its comprehensive application of the mathematical models used for the location of P&R facilities. This offers a systematic approach for anticipating future urban situations, developing supporting policies, and analyzing their effects.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have