Abstract

The study simulated the transmission dynamics of Ebola Zaire virus using two models: a modified SIR model with the understanding that the recovered can become infected again and the infected die at a certain rate and a quarantine model, which ascertained the effects of quarantining the infected. Furthermore, an appropriate system of Ordinary Differential Equations (ODE) was formulated for the transmission and the method of linearized stability approach was used to solve the equations. Stability analysis of both models indicated that, the Disease Free Equilibrium (DFE) states of the models were unstable if they exist. These equilibria states showed that the disease can easily be triggered off, so there is need to be constantly alert and effective preventive measures put in place against its spread. In addition, numerical experiments were carried out with the models' parameters assigned specific hypothetical values and graphs were plotted to investigate the effect of these parameters on the transmission of the disease. The results showed that, with the nature of Ebola Zaire virus, uncontrolled transmittable contacts between the infected and the susceptible can lead to a very serious outbreak with high mortality rate, since no immunity and drugs at moment. However, with effective quarantining structures put in place such situation can be better managed and outbreak controlled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.