Abstract

The recrystallization behavior of Nb microalloyed steels was studied using hot torsion testing with the aim of modeling the recrystallization processes taking place during hot rolling. Continuous and interrupted torsion tests were performed in the temperature range 850 to 1050°C at strain rates of 0.05 to 5/s on selected low carbon steels containing Cr, Mo, Nb, Ni and Ti. The kinetics of static and metadynamic recrystallization were characterized and appropriate expressions were formulated for the recrystallization kinetics. These are shown to depend on steel composition and the processing conditions. The rate of metadynamic recrystallization increases with strain rate and temperature and is observed to be independent of strain, in contrast to the observations for static recrystallization. By means of extrapolations to mill strain rates, it is shown that metadynamic recrystallization will always be more rapid than static recrystallization, even at the largest possible accumulated strains. These calculations support the view that the unexpected load drops occasionally observed in industrial mills (particularly in the final few passes) are probably due to strain accumulation leading to the initiation of dynamic recrystallization, followed by metadynamic recrystallization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.