Abstract

Bioerodible polymers have been extensively used as carriers for drug delivery and as scaffolds for tissue engineering. The ability to model and predict erosion behavior can enable the rational design and optimization of biomaterials for various biomedical applications in vivo. This review examines critically the current approaches in mathematical modeling of the erosion of synthetic polymers. The models are classified broadly based on whether they use phenomenological, probabilistic, or empirical approaches. An analysis of the various physical, chemical, and biological factors affecting polymer erosion and the classes of bioerodible polymers to which these analyses have been applied are discussed. The key features and assumptions associated with each of the models are described, and information is provided on the limitations of the models and the various approaches. The review concludes with several directions for future models of polymer erosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.