Abstract
Abstract A mathematical description is presented for the leaching behavior of cobalt and chromium from their solidified/stabilized forms under the attack from biofilms commonly developed by acid forming bacteria such as Thiobacillus thiooxidans or Thiobacillus ferooxidans. The proposed model predicts the metals diffusion and subsequent removal from cylindrical cement waste forms using a Michaelis-Menten-type kinetics, as a special case of the widely accepted Langmuir-Hinshelwood mechanism at the surface of the encapsulating cylinder. The resulting nonlinear model is solved by applying boundary perturbation to reduce the nonlinear problem to an infinite series of linear problems that are solvable by Laplace transform methods. Model predictions compares well with published experimental data and confirms that a Michaelis-Menten-type kinetics is most probably the dominant mechanism for the leaching of heavy metals from cement based waste forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.