Abstract
Using carbon dioxide to replace oxygen as an alternative oxidant gas has proven to be a viable solution in the decarburization process, with potential for industrial applications. In a recent study, the transport phenomena governing the carbon dioxide decarburization process through the use of electromagnetic levitation (EML) was examined. CO2/CO mass transfer was found to be the principal reaction rate control step, as a result gas diffusion has gained significant attention. In the present study, gas diffusion during decarburization process was investigated using computational fluid dynamics (CFD) modeling coupled with chemical reactions. The resulting model was verified through experimental data in a published paper, and employed to provide insights on phenomena typically unobservable through experiments. Based on the results, a new correction of the Frossling equation was presented which better represents the mass transfer phenomena at the metal-gas interface within the range of this research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.