Abstract

A mathematical model for the spread of the COVID-19 disease based on a fractional Atangana–Baleanu operator is studied. Some fixed point theorems and generalized Gronwall inequality through the AB fractional integral are applied to obtain the existence and stability results. The fractional Adams–Bashforth is used to discuss the corresponding numerical results. A numerical simulation is presented to show the behavior of the approximate solution in terms of graphs of the spread of COVID-19 in the Chinese city of Wuhan. We simulate our table for the data of Wuhan from February 15, 2020 to April 25, 2020 for 70 days. Finally, we present a debate about the followed simulation in characterizing how the transmission dynamics of infection can take place in society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.