Abstract

Analytic expression for unsteady hydromagnetic boundary layer flow past an oscillating vertical plate in optically thick nanofluid in presence of thermal radiation and uniform transverse magnetic field is obtained. The Rosseland diffusion flux model is adopted to simulate thermal radiation effects. The momentum and energy conservation equations are made dimensionless and analytic solution is obtained using the Laplace transform. The results for velocity and temperature are obtained and plotted graphically. It is found that the velocity of the nanofluid increases with radiation parameter Nr, Grashof number Gr and time while decreases with increase in magnetic field and Prandtl number Pr. Temperature of nano-fluids increases with time while decrease with increase in Nr and Pr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.