Abstract

Fatigue cracking due to fracture damage is one of the major structural distresses prevalent in today’s hot-mix asphalt (HMA) pavements. HMA resistance to fracture is governed by two fundamental mechanisms: the number of repetitive load cycles for microcracks to coalesce into macrocracks in a crack initiation process (Ni) and the number of repetitive load cycles for macrocrack propagation through the HMA layer thickness in a crack propagation process (Np). To adequately model HMA fracture resistance, the fundamental mechanisms of these two processes must be understood. In this study, mathematical models for computing Ni and Np were formulated based on continuum fracture-mechanics, the work potential theory, and pseudo-strain energy and surface energy concepts. Verification and sensitivity analysis of the models based on laboratory test data, with traditional Texas HMA mixes, yielded plausible results. Overall, the formulated models were found to be potentially promising as a fundamental means to quantitatively characterize the fracture and fatigue cracking resistance of HMA mixes. However, validation and calibration of the models with more HMA mixes and field data is strongly recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.