Abstract
Methamphetamine (MAP) is one of the most abused drugs in Japan. The rate of MAP abuse by young women has recently reached more than 50 percent in adolescents. A major health concern is that these women will continue to use MAP during pregnancy. The purpose of this study was to investigate whether MAP administered to the mother during pregnancy would change the expression of α- and β- myosin heavy chain (MHC) mRNA in rat neonatal hearts, as detected by quantitative RT-PCR. In addition, morphological changes in the rat neonatal ventricles were examined. Pregnant rats were injected intraperitoneally with MAP (1 mg/kg/day) starting at day 0 of gestation and ending at day 21. There was a significant increase in α-MHC mRNA expression in the neonatal ventricular muscle in the experimental group compared with the control at postnatal day (P) 0 and 5. α-MHC mRNA expression in both groups was similar after P9. β-MHC mRNA expression was similar in both groups at P0. Postnatal β-MHC mRNA expression decreased rapidly, but significant alteration was not detected. Neonatal rats at P0 exhibited some cardiac changes, including hypertrophy, degeneration, and disarrangement of myofibers, but these lesions disappeared by P14. We conclude that chronic maternal administration of MAP changes the α- and β-MHC mRNA expression pattern in fetal and neonatal hearts, correlating with abnormal development, plasma level of hormones, and myocardial damage. At the same time, it is indicated that neonatal cardiomyocytes have reversibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.