Abstract

BackgroundMaternal metabolic syndrome during gestation and lactation leads to several Se-status-related metabolic changes in offspring. MS leads to hepatomegaly, liver oxidation, resistance to insulin challenges and selenoptroteins expression upregulation, producing an energy imbalance in hepatocytes. As Se is necessary for correct heart function, Se deposits are depleted and selenoproteins expression downregulated in heart; this depletion being related to cardiovascular damage. Recently, selenoproteins have been directly implicated in the central endocrine regulation of appetite and energy homeostasis. MethodsTo obtain information about how Se is involved in regulating endocrine peripheral energy balance during MS process, two experimental groups of dam rats were used: control (Se: 0.1 ppm) and MS (Fructose 65% and Se: 0.1 ppm). At the end of lactation (21d old), the pups' appetite profile, tissular Se deposits and peptides from gastrointestinal tract (including pancreas), leptin, skeletal growth markers and cytokines in serum were measured. ResultsMS-exposed pups present changes in Se homeostasis, appetite profile and endocrine energy balance signals related to impaired insulin secretion and high leptin serum values. This profoundly affects the pups' growth profile since muscle and bones are in catabolic process and brown adipose tissue (BAT) mass decreases. ConclusionThese results indicate that the pups are suffering a process similar to diabetes type 1 which appeared when dams received low Se dietary supply and they point to Se as an important marker and key treatment for these disorders during gestation and lactation that affect future adult health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.