Abstract

We examined the effect of streptozotocin-induced maternal diabetes of 6-day duration and 4- to 24-h intracerebroventricular and systemic hyperinsulinism on fetal brain neuropeptide Y (NPY) synthesis and concentrations. Maternal diabetes (n = 6) leading to fetal hyperglycemia (5-fold increase; P < 0.05) and normoinsulinemia caused a 40% decline (P < 0.05) in fetal brain NPY messenger RNA (mRNA) and a 50% decline (P < 0.05) in NPY radioimmunoassayable levels compared to levels in streptozotocin-treated nondiabetic (n = 7) and vehicle-treated control (n = 8) animals. In contrast, systemic hyperinsulinemia (n = 7) of 5- to 100-fold increase (P < 0.05) over the respective control (n = 7) with normoglycemia caused an insignificant (20-30%) decrease in fetal brain NPY mRNA and protein concentrations. However, fetal intracerebroventricular hyperinsulinism (n = 7) with no change in fetal glucose concentrations caused a 50-60% decline (P < 0.05) in only the NPY peptide levels, with no change in the corresponding mRNA amounts. We conclude that fetal hyperglycemia of 6-day duration and intracerebroventricular hyperinsulinism of 4-24 h suppress fetal brain NPY concentrations, the former by a pretranslational and the latter by either a translational/posttranslational mechanism or depletion of intracellular secretory stores. We speculate that fetal hyperglycemia and intracerebroventricular hyperinsulinism additively can inhibit various intrauterine and immediate postnatal NPY-mediated biological functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.