Abstract

In order to improve the convenience and sensitivity of amphetamines drug testing and reduce the threat of drugs to humans, we have designed a QCM gas sensor to detect amine-containing drugs. The sensing material is designed based on the chemical nature of amine drugs. The sensing mechanism is derived from a reversible Schiff base interaction between the amino group of the drug and the carbonyl group of the novel calix[6]arene derivatives as well as the hydrogen bond interaction between amino group and hydroxyl. The new composite material was well characterized by different analytical techniques including 1H nuclear magnetic resonance (1H-NMR), fourier transform infrared spectroscopy (FT-IR), scanning electronic microscopy (SEM), transmission electron microscope (TEM), Raman spectra, powder X-ray diffraction, etc. The sensing experiments were conducted by coating the composite onto quartz crystal microbalance (QCM) transducers. The experimental results indicated that the novel calixarene derivatives and their GO complexes based on the design have excellent selectivity, high sensitivity and repeatability to β-phenylethylamine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.