Abstract
Reversible shear thickening is common in concentrated dispersions of Brownian hard-spheres at high-shear rates. We confirm the existence of a well-defined colloidal shear-thickened state through experimental measurements of the shear stress and the first and second normal stress differences in the shear-thickened state as a function of the particle volume fraction for a model dispersion of near hard-spheres. The shear stress and normal stress differences are observed to grow linearly with the shear rate in the shear-thickened state and both normal stress differences are observed to be negative. Our experimental results show the shear-thickened state of colloidal dispersions can be described by three material properties—the shear viscosity and first and second normal stress difference coefficients—that are a function of the volume fraction. All three material properties are found to diverge with a power law scaling as (1−ϕϕmax)−2 close to maximum packing, ϕmax, which is found to be 0.54 ± 0.01. We find ηr,sts > ϒ2,sts > ϒ1,sts. These results are consistent with theoretical predictions for shear thickening by hydrocluster formation and quantitatively comparable to Stokesian Dynamics simulations. We further postulate and show that these material properties are consistent with those measured for non-Brownian suspensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.