Abstract
Modeling clay is a soft malleable material made from oils and waxes. This material is fundamental for ballistic evaluation of body armors because it is used as backing material in ballistic tests. After a ballistic impact, a back-face indentation is measured to assess performance of the armor. Due to the important role of modeling clay in this particular application, its mechanical characterization and comprehension of penetration mechanics are essential for development of new personal protection systems. This paper presents a two-step computational methodology to calibrate parameters of a Cowper–Symonds material model for modeling clay at characteristic strain rates up to 1.8×104 s−1. In the first stage, a high-speed camera is used to record the penetration of a gas-gun launched cylindrical mass with a hemispherical cap into a block of clay. Image-processing software is used to capture the tail of the projectile as it penetrates into the clay. These data are then used to sample the penetration depth as function of time. In the second stage, an in-house developed model of penetration, based on both the spherical cavity expansion theory and the Tate penetration equation, is used to determine, by inverse analysis, the parameters of the Cowper–Symonds clay model. The proposed constitutive relationship for clay and the determined material parameters can be applied accurately to problems involving high strain rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.