Abstract

The elemental characterization of materials constituting radioactive waste is of great importance for the management of storage and repository facilities. To complement the information brought by gamma or X-ray imaging, the performance of a fast neutron interrogation system based on the associated particle technique (APT) has been investigated by using MCNP simulations and by performing proof-of-principle experiments. APT provides a 3D localisation of the emission of fast neutron induced gamma rays, whose spectroscopic analysis allows to identify the elements present in specific volumes of interest in the waste package. Monte Carlo calculations show that it is possible to identify materials enclosed behind the thick outer envelop of a ≈1 m 3 cemented waste drum, provided the excited nuclei emit gamma rays with a sufficient energy to limit photon attenuation. Neutron attenuation and scattering are also predominant effects that reduce the sensitivity and spatial selectivity of APT, but it is still possible to localise items in the waste by neutron time-of-flight and gamma-ray spectroscopy. Experimental tests confirm that the elemental characterization is possible across thick mortar slabs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.