Abstract

We compute the 1-loop correction to the effective action for the string solution in AdS5 × S5 dual to the circular Wilson loop. More generically, the method we use can be applied whenever the two dimensional spectral problem factorizes, to regularize and define the fluctuation determinants in terms of solutions of one-dimensional differential equations. A such it can be applied to non-homogeneous solutions both for open and closed strings and to various boundary conditions. In the case of the circular Wilson loop, we obtain, for the 1-loop partition function a result which up to a factor of two matches the expectation from the exact gauge theory computation. The discrepancy can be attributed to an overall constant in the string partition function coming from the normalization of zero modes, which we have not fixed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.