Abstract

Three HO3S-functionalized porous organic polymers (HO3S-POPs) with high surface areas (500–700 m2/g) and a broad range of porosity profiles were synthesized and tested against homogeneous-acid analogs and commercially available acid resins to evaluate their relative catalytic activities in the acid-catalyzed conversion of fructose to HMF. Comparison of fructose conversions and HMF yields demonstrates that the sulfonated POPs with hierarchical porosity can achieve catalytic activities that rival those of their homogeneous counterparts. The associated HMF selectivities represent optimized values that increase with higher temperature and faster heating, both of which can reduce the reaction time and limit product decomposition. Due to their intrinsically high mesoporosity and number of accessible acid sites, these HO3S-POPs also outperform the commercially available Amberlyst 15 resin catalyst and its crushed variant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.