Abstract

Bronchial asthma, the most prevalent cause of significant respiratory morbidity in the developed world, typically is a chronic disorder associated with long-term changes in the airways. We developed a mouse model of chronic asthma that results in markedly increased numbers of airway mast cells, enhanced airway responses to methacholine or antigen, chronic inflammation including infiltration with eosinophils and lymphocytes, airway epithelial goblet cell hyperplasia, enhanced expression of the mucin genes Muc5ac and Muc5b, and increased levels of lung collagen. Using mast cell-deficient (Kit(W-sh/W-sh) and/or Kit(W/W-v)) mice engrafted with FcRgamma+/+ or FcRgamma-/- mast cells, we found that mast cells were required for the full development of each of these features of the model. However, some features also were expressed, although usually at less than wild-type levels, in mice whose mast cells lacked FcRgamma and therefore could not be activated by either antigen- and IgE-dependent aggregation of Fc epsilonRI or the binding of antigen-IgG1 immune complexes to Fc gammaRIII. These findings demonstrate that mast cells can contribute to the development of multiple features of chronic asthma in mice and identify both Fc Rgamma-dependent and Fc Rgamma-independent pathways of mast cell activation as important for the expression of key features of this asthma model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.