Abstract
In the present work, a mass equation obtained as the solution of an inhomogeneous partial difference equation is used to predict masses of unknown neutron-rich and proton-rich nuclei. The inhomogeneous source terms contain shell-dependent symmetry energy expressions (quadratic in isospin), and include, as well, an independently derived shell-model Coulomb energy equation which describes all known Coulomb displacement energies with a standard deviation of σ c = 41 keV. Perturbations of higher order in isospin, previously recognized as a cause of systematic effects in long-range mass extrapolations, are also incorporated. The most general solutions of the inhomogeneous difference equation have been deduced from a χ 2-minimization procedure based on the recent atomic mass adjustment of Wapstra, Audi, and Hoekstra. Subjecting the solutions further to the condition of charge symmetry preserves the accuracy of Coulomb energies and allows mass predictions for nuclei with both N ⩾ Z and Z > N. The solutions correspond to a mass equation with 470 parameters. Using this equation, 4385 mass values have been calculated for nuclei with A ⩾ 16 (except N = Z = odd for A < 40), with a standard deviation of σ m = 194 keV from the experimental masses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.