Abstract
Abstract Marine geological and geophysical data from Alpha Ridge in the Arctic Ocean are sparse because of thick perennial sea-ice cover, which prevents access by most surface vessels. Rare seismic data in this area, acquired largely from drifting ice-camps, had shown the hemipelagic drape that covers most of the ridge is highly disrupted within a large (>90 000 km 2 ) south central region. Here, evidence of pronounced seafloor erosion and debris flows infilling seafloor lows was previously interpreted to be the result of a possible bolide impact. In recent years, several icebreaker expeditions have successfully acquired multibeam bathymetry and sub-bottom profiler data in the western segment of this region. Analysis of these data reveals a complex seafloor morphology characterized by ridges and troughs, angular blocks and escarpments as well as seismic facies characterized by hyperbolic seafloor reflections, and convoluted to incoherent and transparent sub-bottom reflectivity. These features are interpreted as evidence of sediment mass movement with varying degrees of lateral transport deformation. At least two episodes of failure are interpreted based on the presence of both buried and surficial mass-transport features. As multiple events are interpreted, seismicity is the most plausible trigger mechanism rather than bolide impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.