Abstract

Reversible electroporation is the temporary permeabilization of the cell membrane through the formation of nano-scale pores that are transient defects in the membrane. These pores are caused by short electrical pulses, typically on the order of a few to several hundred microseconds that are delivered by electroporation electrodes inserted around the treated tissue. Reversible electroporation has become an important technique in molecular medicine. It is used to introduce macromolecules such as genes or anticancer drugs, to which the cell membrane is normally not permeable, into the cytosol. For optimal application of molecular medicine, it is important to be able to predict precisely the mass transfer in tissue during reversible electroporation. In this study, we introduce a first attempt at developing a macroscopic mathematical model for analyzing the mass transfer into cells during reversible electroporation of tissue. The model combines a macroscopic model of the electrical fields around electroporation electrodes with a new cells-scale model of electroporation-driven mass transfer and with a macroscopic mass transfer model in tissue. The model is illustrated for a situation typical to that in electrochemotherapy in which cancer is treated with reversible electroporation and a non cell membrane permeant drug such as bleomycin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.