Abstract

Several heterogeneous catalysts are being developed to recycle plastics. Most operate in viscous polymer melts, where external mass transfer effects could limit the supply of co-reactants to active sites. External mass transfer can also impede the diffusion of long chain products away from the catalyst after each cut. Product egress limitations could potentially confer unintentional processivity to catalyst operation, i.e. a tendency for the catalyst to repeatedly cut the same chain after an initial encounter. We formulate reaction–diffusion equations to quantify mass transfer effects on the co-reactant transport to the catalyst and the degree of serendipitous processivity. Results are developed for catalysts in stagnant or stirred melts, with simple expressions involving Damkohler, Peclet, and Sherwood numbers, i.e. dimensionless combinations of rate constants, catalyst particle size, polymer diffusivities, and shear rates (where applicable). We estimate the impact of these effects for a spherical core–shell catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.