Abstract

Specification of mass properties is an essential step in the modeling of jaw dynamics, but obtaining them can be difficult. Here, we used three-dimensional computed tomography (CT) to estimate jaw mass, mean bone density, anatomical locations of the mass and geometric centers, and moments of inertia in the pig jaw. High-resolution CT scans were performed at one-mm slice intervals on specimens submerged in water. The mean estimated jaw mass was 12% greater than the mean wet weight, and 33% more than the mean dry weight. Putative bone marrow accounted for an extra 13% of mass. There was a positive correlation between estimated mean bone density and age. The mass center was consistently in the midline, near the last molar. The mean distance between the mass center and geometric center was small, especially when bone marrow was taken into account (0.58 +/- 0.21 mm), suggesting that mass distribution in the pig jaw is almost symmetrical with respect to its geometric center. The largest moment of inertia occurred around each mandible's supero-inferior axis, and the smallest around its antero-posterior axis. Bone marrow contributed an extra 9% to the moments of inertia in all three axes. Linear relationships were found between the actual mass and a mass descriptor (product of the bounding volume and mean bone density), and between the moments of inertia and moments of inertia descriptors (products of the mass descriptor and two orthogonal dimensions forming the bounding box). The study suggests that imaging modalities revealing three-dimensional jaw shape may be adequate for estimating the bone mass properties in pigs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.