Abstract

A maskless three-dimensional (3D) microfabrication method based on a digital micromirror device (DMD) is proposed for high lateral and vertical resolution. A substrate is scanned laterally under virtual masks of the DMD. The masks are allocated to a large number of virtual slices, all of which are projected in a single scan of the stage. A theoretical model for the cumulative dose distribution in a photoresist is derived and used to predict the resulting 3D profile. Experiments showed that the proposed method is promising for avoiding the stair-step problem and preventing misalignment errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.