Abstract

Pathological anomalies exhibit diverse appearances in medical imaging, making it difficult to collect and annotate a representative amount of data required to train deep learning models in a supervised setting. Therefore, in this work, we tackle anomaly detection in medical images training our framework using only healthy samples. We propose to use the Masked Autoencoder model to learn the structure of the normal samples, then train an anomaly classifier on top of the difference between the original image and the reconstruction provided by the masked autoencoder. We train the anomaly classifier in a supervised manner using as negative samples the reconstruction of the healthy scans, while as positive samples, we use pseudo-abnormal scans obtained via our novel pseudo-abnormal module. The pseudo-abnormal module alters the reconstruction of the normal samples by changing the intensity of several regions. We conduct experiments on two medical image data sets, namely BRATS2020 and LUNA16 and compare our method with four state-of-the-art anomaly detection frameworks, namely AST, RD4AD, AnoVAEGAN and f-AnoGAN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.