Abstract

Release of marrow cells may be determined primarily by the restrictive barrier that separates marrow hematopoietic cords from sinusoids, and by the ability of the cell to negotiate the barrier pores which are of smaller diameter than the cell. This critical interrelationship may be further modulated by humoral agents (releasing factors). To test this hypothesis, we placed human marrow cells in a chamber between millipore or nucleopore filters with pore diameters of 1-8 mum. Fixed, stained, cross sections of the filters allowed histological examination of the penetration of cells and quantification of egress of age-specific cell types. The rate of marrow granulocyte egress was highly correlated with (a) barrier pore diameter. (b) morphological age of cells, and (c) the presence of chemical attractant. Immature granulocytes would not exit through a restrictive barrier even after protracted periods and were not responsive to chemoattractants. Intermediate-aged granulocytes showed a slight ability to respond to attractants and to exit if pore diameters were large. Mature granulocytes exited through the restrictive barrier at all pore diameters studied, however, this egress was accelerated by increasing pore diameter and by the presence of an attractant. Leukemia blast cells were incapable of traversing pore diameters of 1-8 mum.These studies support the hypothesis that the development of deformability, motility, and surface receptors for chemoattractants at the later stages of granulocyte development allow the egress of cells through the marrow sinusoid wall which appears by electron microscopy to be a porous barrier with aperture diameters smaller than cell diameters; and that this process can be modulated by humoral agents which enhance directed movement of cells and may also increase pore size. Moreover, on the basis of our observations, the egress of leukemia cells is best explained by destruction of the normal sinusoid barrier of marrow indicating that manifestations of the disease are dependent on alteration in stromal as well as parenchymal marrow cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.