Abstract
We prove the existence of Markov perfect equilibria (MPE) for nonstationary undiscounted infinite-horizon dynamic games with alternating moves. A suitable finite-horizon equilibrium relaxation, the ending state constrained MPE, captures the relevant features of an infinite-horizon MPE for a long enough horizon, under a uniformly bounded reachability assumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.