Abstract
Rule-based modelling allows to represent molecular interactions in a compact and natural way. The underlying molecular dynamics, by the laws of stochastic chemical kinetics, behaves as a continuous-time Markov chain. However, this Markov chain enumerates all possible reaction mixtures, rendering the analysis of the chain computationally demanding and often prohibitive in practice. We here describe how it is possible to efficiently find a smaller, aggregate chain, which preserves certain properties of the original one. Formal methods and lumpability notions are used to define algorithms for automated and efficient construction of such smaller chains (without ever constructing the original ones). We here illustrate the method on an example and we discuss the applicability of the method in the context of modelling large signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.