Abstract

This chapter is devoted to jump Markov processes and finite semi-Markov processes. In both cases, the index is considered as the calender time, continuously counted over the positive real line. Markov processes are continuous-time processes that share the Markov property with the discrete-time Markov chains. Their future evolution conditional to the past depends only on the last occupied state. Their extension to the so-called semi-Markov processes naturally arises in many types of applications. The future evolution of a semi-Markov process given the past depends on the occupied state too, but also on the time elapsed since the last transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.