Abstract

AimOur study aimed to investigate changes of different markers for routine assessment of fatigue and recovery in response to high-intensity interval training (HIIT).Methods22 well-trained male and female team sport athletes (age, 23.0 ± 2.7 years; V̇O2max, 57.6 ± 8.6 mL·min·kg−1) participated in a six-day running-based HIIT-microcycle with a total of eleven HIIT sessions. Repeated sprint ability (RSA; criterion measure of fatigue and recovery), countermovement jump (CMJ) height, jump efficiency in a multiple rebound jump test (MRJ), 20-m sprint performance, muscle contractile properties, serum concentrations of creatinkinase (CK), c-reactive protein (CRP) and urea as well as perceived muscle soreness (DOMS) were measured pre and post the training program as well as after 72 h of recovery.ResultsFollowing the microcycle significant changes (p < 0.05) in RSA as well as in CMJ and MRJ performance could be observed, showing a decline (%Δ ± 90% confidence limits, ES = effect size; RSA: -3.8 ± 1.0, ES = -1.51; CMJ: 8.4 ± 2.9, ES = -1.35; MRJ: 17.4 ± 4.5, ES = -1.60) and a return to baseline level (RSA: 2.8 ± 2.6, ES = 0.53; CMJ: 4.1 ± 2.9, ES = 0.68; MRJ: 6.5 ± 4.5, ES = 0.63) after 72 h of recovery. Athletes also demonstrated significant changes (p < 0.05) in muscle contractile properties, CK, and DOMS following the training program and after the recovery period. In contrast, CRP and urea remained unchanged throughout the study. Further analysis revealed that the accuracy of markers for assessment of fatigue and recovery in comparison to RSA derived from a contingency table was insufficient. Multiple regression analysis also showed no correlations between changes in RSA and any of the markers.ConclusionsMean changes in measures of neuromuscular function, CK and DOMS are related to HIIT induced fatigue and subsequent recovery. However, low accuracy of a single or combined use of these markers requires the verification of their applicability on an individual basis.

Highlights

  • High-intensity interval training (HIIT), involving short to long (~5–300 s) intensive work intervals interspersed by active or passive recovery periods, is frequently used in training programs of competitive team sport athletes

  • Further analysis revealed that the accuracy of markers for assessment of fatigue and recovery in comparison to Repeated sprint ability (RSA) derived from a contingency table was PLOS ONE | DOI:10.1371/journal.pone

  • Mean changes in measures of neuromuscular function, CK and delayed onset muscle soreness (DOMS) are related to HIIT induced fatigue and subsequent recovery

Read more

Summary

Introduction

High-intensity interval training (HIIT), involving short to long (~5–300 s) intensive work intervals interspersed by active or passive recovery periods, is frequently used in training programs of competitive team sport athletes. This type of intermittent training was shown to improve cardiovascular and metabolic determinants, allowing players to sustain intense phases during the game for longer durations and to recover from it more rapidly [1, 2]. The routine assessment of fatigue and recovery during HIIT is important to improve individual training prescriptions and to ensure competition readiness [8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.