Abstract

BackgroundMultiple aspects of gait are typically impaired post-stroke. Asymmetric gait is common as a consequence of unilateral brain lesions. The relationship between the resulting asymmetric gait and impairments in the ability to properly coordinate the reciprocal stepping activation of the legs is not clear. The objective of this exploratory study is to quantify the effects of hemiparesis on two putatively independent aspects of the bilateral coordination of gait to gain insight into mechanisms and their relationship and to assess their potential as clinical markers.MethodsTwelve ambulatory stroke patients and age-matched healthy adults wore a tri-axial piezo-resistive accelerometer and walked back and forth along a straight path in a hall at a comfortable walking speed during 2 minutes. Gait speed, gait asymmetry (GA), and aspects of the bilateral coordination of gait (BCG) were determined. Bilateral coordination measures included the left-right stepping phase for each stride φi, consistency in the phase generation φ_CV, accuracy in the phase generation φ_ABS, and Phase Coordination Index (PCI), a combination of accuracy and consistency of the phase generation.ResultsGroup differences (p < 0.001) were observed for gait speed (1.1 ± 0.1 versus 1.7 ± 0.1 m/sec for patients and controls, respectively), GA (26.3 ± 5.6 versus 5.5 ± 1.2, correspondingly) and PCI (19.5 ± 2.3 versus 6.2 ± 1.0, correspondingly). A significant correlation between GA and PCI was seen in the stroke patients (r = 0.94; p < 0.001), but not in the controls.ConclusionsIn ambulatory post-stroke patients, two gait coordination properties, GA and PCI, are markedly impaired. Although these features are not related to each other in healthy controls, they are strongly related in stroke patients, which is a novel finding. A measurement approach based on body-fixed sensors apparently may provide sensitive markers that can be used for clinical assessment and for enhancing rehabilitation targeting in post-stroke patients.

Highlights

  • Multiple aspects of gait are typically impaired post-stroke

  • Study Participants 12 patients with hemiparesis due to stroke who underwent rehabilitation in the Groot Klimmendaal Medical Rehabilitation Centre (GKMRC), Arnhem, The Netherlands participated in this study. 12 age-matched healthy controls were recruited from a local fitness center

  • The relatively good scores on the Brunnstrom Fugl-Meyer Test (4.9 out of 6.0), the Motricity Index (82.6 out of 100.0), the Modified Ashworth Scale (0.9 out of 4.0), the Berg Balance Scale (53.4 out of 56.0) and the relatively high gait speed (1.1 m/sec) in the patients are likely a consequence of the inclusion criterion requirement of an ability to walk 120 meters. Regardless, they indicate that the patient population had only mild to moderate impairments in mobility

Read more

Summary

Introduction

Multiple aspects of gait are typically impaired post-stroke. Asymmetric gait is common as a consequence of unilateral brain lesions. The relationship between the resulting asymmetric gait and impairments in the ability to properly coordinate the reciprocal stepping activation of the legs is not clear The objective of this exploratory study is to quantify the effects of hemiparesis on two putatively independent aspects of the bilateral coordination of gait to gain insight into mechanisms and their relationship and to assess their potential as clinical markers. One can compare the swing times performed by each leg These measures are compared over series of steps and not per individual gait cycles [3]. Another feature is the timing of the left-right coordination of gait, namely the bilateral coordination of gait (BCG). Evaluating the left-right stepping phasing pattern (ideally 180°) is a convenient way to assess this interaction and is done based on a series of steps

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.