Abstract

Although marine reserves represent one of the most effective management responses to human impacts, their capacity to sustain the same diversity of species, functional roles and biomass of reef fishes as wilderness areas remains questionable, in particular in regions with deep and long-lasting human footprints. Here we show that fish functional diversity and biomass of top predators are significantly higher on coral reefs located at more than 20 h travel time from the main market compared with even the oldest (38 years old), largest (17,500 ha) and most restrictive (no entry) marine reserve in New Caledonia (South-Western Pacific). We further demonstrate that wilderness areas support unique ecological values with no equivalency as one gets closer to humans, even in large and well-managed marine reserves. Wilderness areas may therefore serve as benchmarks for management effectiveness and act as the last refuges for the most vulnerable functional roles.

Highlights

  • Marine reserves represent one of the most effective management responses to human impacts, their capacity to sustain the same diversity of species, functional roles and biomass of reef fishes as wilderness areas remains questionable, in particular in regions with deep and long-lasting human footprints

  • Using 11 explanatory variables related to coral reef environment, geography, geomorphology, habitat and human influence, boosted regression tree (BRT) models, which are able to cope with interactions and nonlinear relationships[18], explained between 40 and 70% of the variance in the 6 fish community metrics across the 1,626 transects surveyed outside marine reserves (Supplementary Table 1, 15–49% of explained deviance)

  • The contrasts observed between wilderness areas and fished areas or marine reserves are probably conservative and may be even more pronounced in the developing world where Marine Protected Areas (MPAs) have fewer key features[4,34] and where fishing pressure is higher[35]

Read more

Summary

Introduction

Marine reserves represent one of the most effective management responses to human impacts, their capacity to sustain the same diversity of species, functional roles and biomass of reef fishes as wilderness areas remains questionable, in particular in regions with deep and long-lasting human footprints. New Caledonia (South-Western Pacific) offers a unique opportunity to test whether marine reserves can achieve the same ecological value as wilderness areas, as, at a regional scale and for a given species pool, there is (i) a strong gradient of human influence from the capital city market of the island (Noumea, 98,000 inhabitants), (ii) a large variety of restrictions ranging from traditionally managed areas to long established (up to 38 years) and large (up to 175 km2) no-entry marine reserves, and (iii) extensive surveys (1,833 underwater visual censuses) of fish communities on coral reefs (Fig. 1). We show that the levels of the six fish community metrics only saturate beyond a threshold of 20 h travel time from the market In comparison with those wilderness areas, even the most effective marine reserve has 3.5 times lower biomass of apex predators and misses some key functional roles such as mobile top predators

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.