Abstract

Research Article| December 01, 2003 Marine origin for Precambrian, carbonate-hosted magnesite? Tracy D. Frank; Tracy D. Frank 1 Department of Geosciences, University of Nebraska, Lincoln, Nebraska 68588-0340, USA Search for other works by this author on: GSW Google Scholar Christopher R. Fielding Christopher R. Fielding 1 Department of Geosciences, University of Nebraska, Lincoln, Nebraska 68588-0340, USA Search for other works by this author on: GSW Google Scholar Geology (2003) 31 (12): 1101–1104. https://doi.org/10.1130/G20101.1 Article history received: 07 Aug 2003 rev-recd: 25 Aug 2003 accepted: 28 Aug 2003 first online: 02 Mar 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Tracy D. Frank, Christopher R. Fielding; Marine origin for Precambrian, carbonate-hosted magnesite?. Geology 2003;; 31 (12): 1101–1104. doi: https://doi.org/10.1130/G20101.1 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyGeology Search Advanced Search Abstract Large-scale, carbonate-hosted magnesite (MgCO3) deposits, although rare, occur mainly in Precambrian strata. Although many occurrences have characteristics consistent with penecontemporaneous formation in an evaporative marine setting, the general absence of CaSO4 minerals has precluded the adoption of evaporative marine depositional models. In modern seawater, excess Ca2+ and Mg2+ relative to \(CO^{2{-}}_{3}\) and \(HCO^{{-}}_{3}\) as well as abundant \(SO^{2{-}}_{4}\) require that, upon evaporation, MgCO3 precipitation is accompanied by substantial deposition of CaSO4 minerals. Here we use evidence from a Neoproterozoic magnesite deposit to suggest that differences in Precambrian seawater geochemistry enabled MgCO3 to form in isolation under evaporative conditions. During the Precambrian, precipitation of CaSO4 evaporites was hindered by (1) elevated dissolved inorganic carbon and enhanced precipitation of CaCO3, which limited the availability of Ca2+, and (2) a small marine sulfate reservoir. Because sulfate is an inhibitor to dolomitization, low sulfate concentrations increased the potential for penecontemporaneous dolomitization in marine settings. By utilizing Ca2+, dolomitization served to increase fluid Mg/Ca ratios. In this \(HCO^{{-}}_{3}\) -rich but \(SO^{2{-}}_{4}\) -poor system, dolomitization coupled with significant evaporative concentration resulted in magnesite formation without coprecipitation of CaSO4 minerals. Decreasing carbonate saturation, progressive oxygenation, and a concomitant increase in sulfate availability during the Proterozoic ultimately led to the development of the more familiar conditions of the Phanerozoic, in which dolomitization was restricted to environments where elevated Mg/Ca ratios could overcome the inhibitory effects of sulfate and significant magnesite deposition was restricted to sabkhas and alkaline lakes. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.