Abstract

The objective of the present study was to examine how N and P availability interact with C metabolism in marine heterotrophic plankton and whether or not heterotrophic groups are likely to be subjected to essential nutrient limitations in natural coastal waters. The nutrients stud- ied were mineral P and N; the latter is a proxy for essential amino acids. We present a general the- oretical framework and criteria for evaluating essential nutrient limitations in heterotrophs. Data were derived from a comprehensive mesocosm experiment, where food-web flows were esti- mated using inverse modelling. Bacteria of the mesocosm communities were severely P-deficient throughout. The heterotrophic nanoplankton was most likely limited by another essential nutrient or by food C availability. Ciliates were most likely P-limited, whereas copepods might experience P limitation, but were more likely limited by another essential nutrient or food C in the present experiments. The N contents of the food were close to the theoretical requirements for copepods and ciliates. All planktonic groups released dissolved inorganic nitrogen (DIN), and all except bacteria released dissolved inorganic phosphorus (DIP). Our results suggested that P limitation might be readily experienced by bacteria, ciliates and perhaps also by copepods, but not by het- erotrophic nanoplankton in natural North East Atlantic coastal waters. A predator must balance its energy metabolism and growth under the variable availabilities of essential nutrients, and we pro- pose that C growth efficiency is a dynamic variable mainly dependent on the availability of the most limiting nutrient. We support the view that C availability alone cannot be used as a proxy for the food limitation of bacterial and zooplankton growth. Specific essential nutrients should be regarded as potential limiting factors, as for phytoplankton. The variable nutritional requirements of heterotrophic predators will then represent a major driver of heterotrophic species diversity, allowing a broad diversity of heterotrophic species in plankton communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.