Abstract
Models of late-glacial environmental change in coastal areas are commonly based on radiocarbon ages on marine shell and basal lake sediments, both of which may be compromised by reservoir effects. The magnitude of the oceanic reservoir age in the inland waters of the Georgia Basin and Puget Lowland of northwestern North America is inferred from radiocarbon ages on shell-wood pairs in Saanich Inlet and previously published estimates. The weighted mean oceanic reservoir correction in the early and mid Holocene is −720±90 yr, slightly smaller than, but not significantly different from, the modern value. The correction in late-glacial time is −950±50 yr. Valley-head sites yield higher reservoir values (−1200±130 yr) immediately after deglaciation. The magnitude of the gyttja reservoir effect is inferred from pairs of bulk gyttja and plant macrofossil ages from four lakes in the region. Incorporation of old carbon into basal gyttja yields ages from bulk samples that are initially about 600 yr too old. The reservoir age declines to less than 100 yr after the first millennium of lake development. When these corrections are accounted for, dates of deglaciation and late-glacial sea-level change in the study area are pushed forward in time by more than 500 yr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.