Abstract

To evaluate the marginal integrity (MI%) and to characterize specific properties of a thermoviscous bulk-fill resin composite, two regular bulk-fill resin composites, and a non-bulk-fill resin composite. VisCalor bulk (VBF), Filtek One Bulk Fill (OBF), and Aura Bulk Fill (ABF) were evaluated. Filtek Z250 XT (ZXT) was used as non-bulk-fill control. MI% was evaluated in standardized cylindrical cavities restored with the composites by using a 3D laser confocal microscope. The following properties were characterized: volumetric polymerization shrinkage (VS%), polymerization shrinkage stress (Pss), degree of conversion (DC%), microhardness (KHN), flexural strength (FS), and elastic modulus (EM). Data were analyzed by one-way and two-way ANOVA, and Tukey HSD post-hoc test (α = 0.05). VBF presented the highest MI% and the lowest VS% and Pss (p < 0.05). DC% ranged from 59.4% (OBF) to 71.0% (ZXT). ZXT and VBF presented similar and highest KHN than OBF and ABF (p < 0.05). ABF presented the lowest FS (p < 0.05). EM ranged from 5.5 GPa to 7.7 GPa, with the values of ZXT and VBF being similar and statistically higher than those of OBF and ABF (p < 0.05). Thermoviscous technology employed by VisCalor bulk was able to improve its mechanical behavior comparatively to regular bulk-fill resin composites and to contribute to a better marginal integrity in restorations built up in cylindrical cavities with similar geometry to a class I cavity as well. Although presenting overall better physicomechanical properties, Z250 XT presented the worst MI%. The marginal integrity, which is pivotal for the success of resin composite restorations, could be improved using VisCalor bulk-fill. The worst MI% presented by Z250 XT reinforces that non-bulk-fill resin composites shall not be bulk-inserted in the cavity to be restored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.