Abstract

Wetlands have an important role in ecosystem function and biodiversity. Effective management of wetlands requires accurate and comprehensive spatial information on location, size, classification, and connectivity in the landscape. Using a GIS, two provincial wetland maps were compared with regard to their areal correspondence across different ecoregions of New Brunswick. The first consisted of discrete wetland units (vector data) derived from aerial photo interpretation. The second consisted of wet areas modeled by a newly developed depth-to-water index with continuous coverage across the landscape (raster data). This index was derived from a digital elevation model and hydrographic data. The relative advantages and disadvantages of the two approaches were assessed. The two maps were generally consistent with most discrete wetland areas (51%–67%) embedded in the 0– 10 cm depth-to-water class, verifying the continuous modeling approach. The continuous model identified a larger wetland area. Much of this additional area consisted of riparian zones and numerous small wetlands (< 1 ha) that were not captured by aerial photo interpretation. Unlike the discrete map, the continuous model showed the hydrological connectivity of wetlands across the landscape. Both approaches revealed that topography was a major control on wetland distribution between ecoregions, with more wetland in ecoregions with flatter topography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.