Abstract

Spin-unrestricted calculations and time-dependent DFT were used to characterize structure and reactivity of 1-methyl-8-nitronaphthalene (1) in the triplet state. Four hybrid models (B3LYP, PBE0, MPW1K, BHLYP) with significantly different amount of the exact exchange were employed. The triplet potential energy surface of 1 was mapped by using the UB3LYP and UMPW1K techniques. Both hybrid models provided qualitatively consistent pictures for the potential energy landscape. Thirty-one stationary points, of which 15 were minima, were found at the UB3LYP level of theory. Three minima corresponding to the nitro form of 1 were located on the triplet surface; just one was found for the singlet ground state. Two reaction paths leading from 1 either to a nitrite-type intermediate (2) or to the aci-form (3) were characterized. For both paths, reaction products were of diradical nature. The lower activation energy was obtained for the triplet-state tautomerization affording 3. The ground state of triplet multiplicity was predicted for two isomers of the aci-form. The triplet diradical 3 is expected to react through the thermal population of a close-lying singlet excited state. The results are discussed in relation to mechanisms of photoinduced rearrangements of peri-substituted nitronaphthalenes that can be used to develop novel photolabile protecting groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.