Abstract

The structure of zinc aluminosilicate glasses with the composition (ZnO)x(Al2O3)y(SiO2)1-x-y, where 0 ≤ x < 1, 0 ≤ y < 1, and x + y < 1, was investigated over a wide composition range by combining neutron and high-energy x-ray diffraction with 27Al magic angle spinning nuclear magnetic resonance spectroscopy. The results were interpreted using an analytical model for the composition-dependent structure in which the zinc ions do not act as network formers. Four-coordinated aluminum atoms were found to be in the majority for all the investigated glasses, with five-coordinated aluminum atoms as the main minority species. Mean Al-O bond distances of 1.764(5) and 1.855(5) Å were obtained for the four- and five-coordinated aluminum atoms, respectively. The coordination environment of zinc was not observed to be invariant. Instead, it is dependent on whether zinc plays a predominantly network-modifying or charge-compensating role and, therefore, varies systematically with the glass composition. The Zn-O coordination number and bond distance were found to be 4.36(9) and 2.00(1) Å, respectively, for the network-modifying role vs 5.96(10) and 2.08(1) Å, respectively, for the charge-compensating role. The more open coordination environment of the charge-compensator is related to an enhanced probability of zinc finding bridging oxygen atoms as nearest-neighbors, reflecting a change in the connectivity of the glass network comprising four-coordinated silicon and aluminum atoms as the alumina content is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.