Abstract

Shiga-like toxin type II (SLT-II) is one of two antigenically distinct cytotoxins produced by enterohemorrhagic Escherichia coli that are believed to play a central role in the pathogenesis of enterohemorrhagic E. coli-induced disease. SLT-II is a bipartite toxin with an enzymatically active A subunit that inhibits protein synthesis and an oligomeric B subunit that binds to the glycolipid globotriaosylceramide on eukaryotic cells. In this study, functional boundaries of the slt-II operon were mapped. Mutant proteins lacking the last four amino acids from the carboxy terminus of the 70-amino-acid mature SLT-II B polypeptide had no cytotoxic activity. However, when only two amino acids were removed from the carboxy terminus of the B subunit, the cytotoxic activity of the holotoxin was not altered drastically. Furthermore, a 21-amino-acid extension to the carboxy terminus of the SLT-II B polypeptide was tolerated with a minimum reduction in cytotoxic activity of the holotoxin. Deletion of the region coding for amino acids 3 through 18 of the 296-amino-acid mature SLT-II A polypeptide resulted in complete ablation of the cytotoxic activity of the holotoxin as well as abolition of the enzymatic activity of the A subunit. Thus, it appears that both 5'- and 3'-terminal coding sequences are essential for function of the slt-II operon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.