Abstract

The aortic stiffness has been found to be a useful independent indicator of several cardiovascular diseases such as hypertension and aneurysms. Existing methods to estimate the aortic stiffness are either invasive, e.g. catheterization, or yield average global measurements which could be inaccurate, e.g., tonometry. Alternatively, the aortic pulse wave velocity (PWV) has been shown to be a reliable marker for estimating the wall stiffness based on the Moens–Korteweg (M–K) formulation. Pulse Wave Imaging (PWI) is a relatively new, ultrasound-based imaging method for noninvasive and regional estimation of PWV. The present study aims at showing the application of PWI in obtaining localized wall mechanical properties by making PWV measurements on several adjacent locations along the ascending thoracic to the suprarenal abdominal aortic trunk in its intact vessel form. The PWV estimates were used to calculate the regional wall modulus based on the M–K relationship and were compared against conventional mechanical testing. The findings indicated that for the anisotropic aortic wall, the PWI estimates of the modulus are smaller than the circumferential modulus by an average of −32.22% and larger than the longitudinal modulus by an average of 25.83%. Ongoing work is focused on the in vivo applications of PWI in normal and pathological aortas with future implications in the clinical applications of the technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.