Abstract

Herpes simplex virus (HSV) ocular virulence has been associated with strain sensitivity to mouse interferon (IFN)-alpha/beta. To identify the region of the virus genome associated with heightened resistance to this cytokine, intertypic recombinants were constructed using the intact genome of avirulent, IFN-sensitive HSV type 1 (strain 35) and XbaI-digested DNA from virulent, IFN-resistant HSV type 2 (strain 186). An intertypic recombinant, designated HSV-R4, was isolated which grew to titres 10- to 100-fold higher than HSV-1(35) in mouse ocular tissue in vivo, and induced stromal keratitis. The recombinant which was several orders of magnitude more resistant to mouse IFN-alpha/beta than HSV-1(35) had a genome composed of HSV-1(35) DNA except for a 12 kb fragment (0.15 to 0.23 map units) derived from HSV-2(186). To define the IFN resistance locus further, three overlapping subclones of this 12 kb fragment were constructed from the HSV-2(186) genome and subjected to marker rescue experiments. The cloned BamHI D fragment was the only subclone that promoted HSV-1(35) ocular growth in vivo. An intertypic recombinant, designated HSV-R(BD), was isolated from the 35 x 186 BamHI D transfection progeny pool. This recombinant, in contrast to HSV-1(35), was several orders of magnitude more resistant to mouse IFN-alpha/beta inhibition in vitro, grew 10- to 100-fold better in mouse ocular tissue in vivo, and caused severe necrotizing stromal keratitis in BALB/c mice. Analysis of the recombinant genome indicated that the HSV-2 genetic information responsible for IFN resistance of HSV-R(BD) was located within the BamHI D fragment, most likely mapping to that region containing three partial open reading frames designated UL14, UL15 and UL16. The products encoded by this region remain to be identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.