Abstract

Binding of the T cell receptor (TCR) to a bacterial superantigen (SAG) results in stimulation of a large population of T cells and subsequent inflammatory reactions. To define the functional contribution of TCR residues to SAG recognition, binding by 24 single-site alanine substitutions in the TCR Vbeta domain to Staphylococcus aureus enterotoxin (SE) C3 was measured, producing an energy map of the TCR-SAG interaction. The results showed that complementarity determining region 2 (CDR2) of the Vbeta contributed the majority of binding energy, whereas hypervariable region 4 (HV4) and framework region 3 (FR3) contributed a minimal amount of energy. The crystal structure of the Vbeta8.2-SEC3 complex suggests that the CDR2 mutations act by disrupting Vbeta main chain interactions with SEC3, perhaps by affecting the conformation of CDR2. The finding that single Vbeta side chain substitutions had significant effects on binding and that other SEC3-reactive Vbeta are diverse at these same positions indicates that SEC3 binds to other TCRs through compensatory mechanisms. Thus, there appears to be strong selective pressure on SAGs to maintain binding to diverse T cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.